In this section, we will extend the concept of the definite integral  $\int_a^b f(x) dx$  to functions with an infinite discontinuity and to infinite intervals.

That is integrals of the type

A) 
$$\int_{1}^{\infty} \frac{1}{x^{3}} dx$$
 B)  $\int_{0}^{1} \frac{1}{x^{3}} dx$  C)  $\int_{-\infty}^{\infty} \frac{1}{4+x^{2}}$ 

- Note that the function f(x) = <sup>1</sup>/<sub>x<sup>3</sup></sub> has a discontinuity at x = 0 and the F.T.C. does not apply to B.
- Note that the limits of integration for integrals A and C describe intervals that are infinite in length and the F.T.C. does not apply.

## **Infinite Intervals**

#### An Improper Integral of Type 1

(a) If  $\int_{a}^{t} f(x) dx$  exists for every number  $t \ge a$ , then

$$\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$$

provided that limit exists and is finite.

(c) If  $\int_t^b f(x) dx$  exists for every number  $t \le b$ , then

$$\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx$$

provided that limit exists and is finite.

The improper integrals  $\int_{a}^{\infty} f(x)dx$  and  $\int_{-\infty}^{b} f(x)dx$  are called **Convergent** if the corresponding limit exists and is finite and **divergent** if the limit does not exists.

(c) If (for any value of a) both  $\int_a^{\infty} f(x) dx$  and  $\int_{-\infty}^a f(x) dx$  are convergent, then we define

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx$$

$$\int_{a}^{\infty} f(x)dx = \lim_{t \to -\infty} \int_{a}^{t} f(x)dx \qquad \int_{-\infty}^{b} f(x)dx = \lim_{t \to -\infty} \int_{t}^{b} f(x)dx$$

If  $f(x) \ge 0$ , we can give the definite integral above an area interpretation; namely that if the improper integral converges, the area under the curve on the infinite interval is finite.

Example Determine whether the following integrals converge or diverge:

$$\int_1^\infty \frac{1}{x} dx, \qquad \int_1^\infty \frac{1}{x^3} dx,$$

$$\int_{a}^{\infty} f(x)dx = \lim_{t \to -\infty} \int_{a}^{t} f(x)dx \qquad \int_{-\infty}^{b} f(x)dx = \lim_{t \to -\infty} \int_{t}^{b} f(x)dx$$

Example Determine whether the following integrals converge or diverge:

$$\int_1^\infty \frac{1}{x} dx, \qquad \int_1^\infty \frac{1}{x^3} dx,$$



Since  $\int_1^{\infty} \frac{1}{x} dx$  diverges, the area under the curve y = 1/x on the interval  $[1, \infty)$  (shown on the left above) is not finite.

Since  $\int_{1}^{\infty} \frac{1}{x^{3}} dx$  converges, the area under the curve  $y = 1/x^{3}$  on the interval  $[1, \infty)$  (shown on the right above) is finite.

$$\int_{a}^{\infty} f(x)dx = \lim_{t \to -\infty} \int_{a}^{t} f(x)dx \qquad \int_{-\infty}^{b} f(x)dx = \lim_{t \to -\infty} \int_{t}^{b} f(x)dx$$

**Example** Determine whether the following integral converges or diverges:  $\int_{-\infty}^{0} e^{x} dx$ 

- By definition  $\int_{-\infty}^{0} e^{x} dx = \lim_{t \to -\infty} \int_{t}^{0} e^{x} dx$ •  $= \lim_{t \to -\infty} e^{x} \Big|_{t}^{0}$
- $\blacktriangleright = \lim_{t \to -\infty} (e^0 e^t)$
- ► = 1 0 = 1.
- The integral  $\int_{-\infty}^{0} e^{x} dx$  converges to 1.

# **Infinite Intervals**

If (for any value of *a*) both  $\int_{a}^{\infty} f(x) dx$  and  $\int_{-\infty}^{a} f(x) dx$  are convergent, then we define

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{\infty} f(x)dx$$

**Example** Determine whether the following integral converges or diverges:

$$\int_{-\infty}^{\infty} \frac{1}{4+x^2} dx$$

Since this is a continuous function, we can calculate  $\int_0^\infty \frac{1}{4+x^2} dx$  and  $\int_{-\infty}^0 \frac{1}{4+x^2} dx$   $\int_0^\infty \frac{1}{4+x^2} dx = \lim_{t \to \infty} \int_0^t \frac{1}{4+x^2} dx = \lim_{t \to \infty} \frac{1}{2} \tan^{-1} \frac{x}{2} \Big|_0^t$   $= \lim_{t \to \infty} \frac{1}{2} (\tan^{-1} \frac{t}{2} - \tan^{-1} 0) = \frac{1}{2} (\frac{\pi}{2} - 0) = \frac{\pi}{4}.$   $\int_{-\infty}^0 \frac{1}{4+x^2} dx = \lim_{t \to -\infty} \int_t^0 \frac{1}{4+x^2} dx = \lim_{t \to -\infty} \frac{1}{2} (\tan^{-1} \frac{x}{2}) \Big|_t^0$   $= \lim_{t \to -\infty} \frac{1}{2} (\tan^{-1} 0 - \tan^{-1} \frac{t}{2}) = \frac{1}{2} (0 - \frac{(-\pi)}{2}) = \frac{\pi}{4}.$ The integral  $\int_{-\infty}^\infty \frac{1}{4+x^2} dx$  converges and is equal to  $\int_{-\infty}^0 \frac{1}{4+x^2} dx + \int_0^\infty \frac{1}{4+x^2} dx = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}.$ 

#### Theorem

$$\int_1^\infty rac{1}{x^p} dx$$
 is convergent if  $p>1$  and divergent if  $p\leq 1$ 

#### Proof

• We've verified this for p = 1 above. If  $p \neq 1$ 

- If p > 1,  $\lim_{t\to\infty} \left(\frac{t^{1-\rho}}{1-\rho} \frac{1}{1-\rho}\right) = -\frac{1}{1-\rho}$  and the integral converges.
- ▶ If p < 1,  $\lim_{t\to\infty} \left(\frac{t^{1-p}}{1-p} \frac{1}{1-p}\right)$  does not exist since  $\frac{t^{1-p}}{1-p} \to \infty$  as  $t \to \infty$  and the integral diverges.

#### Improper integrals of Type 2

(a) If f is continuous on [a, b) and is discontinuous at b, then

$$\int_{a}^{b} f(x) dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x) dx$$

if that limit exists and is finite. (b) If f is continuous on (a, b] and is discontinuous at a, then

$$\int_{a}^{b} f(x) dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x) dx$$

if that limit exists and is finite.

The improper integral  $\int_{a}^{b} f(x) dx$  is called **convergent** if the corresponding limit exists and **Divergent** if the limit does not exist.

(c) If f has a discontinuity at c, where a < c < b, and both  $\int_a^c f(x) dx$  and  $\int_c^b f(x) dx$  are convergent, then we define

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

## Functions with infinite discontinuities

If f is continuous on [a, b) and is discontinuous at b, then

$$\int_{a}^{b} f(x)dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x)dx$$

if that limit exists and is finite.

Example Determine whether the following integral converges or diverges

$$\int_0^2 \frac{1}{x-2} dx$$

- ► The function f(x) = <sup>1</sup>/<sub>x-2</sub> is continuous on [0, 2) and is discontinuous at 2. Therefore, we can calculate the integral.
- $\int_0^2 \frac{1}{x-2} dx = \lim_{t \to 2^-} \int_0^t \frac{1}{x-2} dx = \lim_{t \to 2^-} \ln|x-2| \Big|_0^t$
- ► =  $\lim_{t\to 2^-} (\ln |t-2| \ln |-2|)$  which does not exist since  $\ln |t-2| \to -\infty$  as  $t \to 2^-$ .

• Therefore the improper integral  $\int_0^2 \frac{1}{x-2} dx$  diverges.

### Functions with infinite discontinuities

If f is continuous on (a, b] and is discontinuous at a, then

$$\int_{a}^{b} f(x)dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x)dx$$

if that limit exists and is finite.

Example Determine whether the following integral converges or diverges

$$\int_0^1 \frac{1}{x^2} dx$$

► The function f(x) = <sup>1</sup>/<sub>x<sup>2</sup></sub> is continuous on (0,1] and is discontinuous at 0. Therefore, we can calculate the integral.

• 
$$\int_0^1 \frac{1}{x^2} dx = \lim_{t \to 0^+} \int_t^1 \frac{1}{x^2} dx = \lim_{t \to 0^+} \frac{-1}{x} \Big|_t^1$$

- ▶ =  $\lim_{t\to 0^+} \left(-1 \frac{(-1)}{t}\right) = = \lim_{t\to 0^+} \left(\frac{(1)}{t} 1\right)$  which does not exist since  $\frac{1}{t} \to \infty$  as  $t \to 0^+$ .
- Therefore the improper integral  $\int_0^1 \frac{1}{x^2} dx$  diverges.

Theorem It is not difficult to show that

 $\boxed{\int_0^1 \frac{1}{x^p} dx} \quad \text{is divergent if } p \ge 1 \text{ and convergent if } p < 1$ 

## Functions with infinite discontinuities

If f has a discontinuity at c, where a < c < b, and both  $\int_a^c f(x) dx$  and  $\int_c^b f(x) dx$  are convergent, then we define

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

**Example** determine if the following integral converges or diverges and if it converges find its value.

$$\int_{0}^{4} \frac{1}{(x-2)^{2}} dx$$

- ▶ The function  $\frac{1}{(x-2)^2}$  has a discontinuity at x = 2. Therefore we must check if both improper integrals  $\int_0^2 \frac{1}{(x-2)^2} dx$  and  $\int_2^4 \frac{1}{(x-2)^2} dx$  converge or diverge.
- $\int_0^2 \frac{1}{(x-2)^2} dx = \lim_{t \to 2^-} \int_0^t \frac{1}{(x-2)^2} dx = \lim_{t \to 2^-} \frac{(-1)}{x-2} \Big|_0^t$
- ► =  $\lim_{t\to 2^-} \left(\frac{(-1)}{t-2} \frac{1}{2}\right)$ , which does not exist.
- ► Therefore we can conclude that  $\int_0^4 \frac{1}{(x-2)^2} dx = \int_0^2 \frac{1}{(x-2)^2} dx + \int_2^4 \frac{1}{(x-2)^2} dx$ diverges, since this integral converges only if both improper integrals  $\int_0^2 \frac{1}{(x-2)^2} dx$  and  $\int_2^4 \frac{1}{(x-2)^2} dx$  converge.

# **Comparison Test for Integrals**

#### **Comparison Test for Integrals**

**Theorem** If f and g are continuous functions with  $f(x) \ge g(x) \ge 0$  for  $x \ge a$ , then

(a) If ∫<sub>a</sub><sup>∞</sup> f(x)dx is convergent, then ∫<sub>a</sub><sup>∞</sup> g(x)dx is convergent.
(b) If ∫<sub>a</sub><sup>∞</sup> g(x)dx is divergent, then ∫<sub>a</sub><sup>∞</sup> f(x)dx is divergent.

**Example** Use the comparison test to determine if the following integral is convergent or divergent (using your knowledge of integrals previously calculated).

$$\int_1^\infty \frac{1}{x^2 + x + 1} \, dx$$

We have

$$\frac{1}{x^2+x+1}\,\leq\,\frac{1}{x^2} \ \ \text{if} \ \ x>1.$$

▶ Therefore using  $f(x) = \frac{1}{x^2}$  and  $g(x) = \frac{1}{x^2+x+1}$  in the comparison test above, we can conclude that

$$\int_{1}^{\infty} \frac{1}{x^2 + x + 1} dx \quad \text{converges}$$

since

$$\int_1^\infty \frac{1}{x^2} dx \quad \text{ converges}$$

# **Comparison Test for Integrals**

#### **Comparison Test for Integrals**

**Theorem** If f and g are continuous functions with  $f(x) \ge g(x) \ge 0$  for  $x \ge a$ , then

(a) If  $\int_{a}^{\infty} f(x)dx$  is convergent, then  $\int_{a}^{\infty} g(x)dx$  is convergent. (b) If  $\int_{a}^{\infty} g(x)dx$  is divergent, then  $\int_{a}^{\infty} f(x)dx$  is divergent.

**Example** Use the comparison test to determine if the following integral is convergent or divergent (using your knowledge of integrals previously calculated).

$$\int_{1}^{\infty} \frac{1}{x - \frac{1}{2}} dx$$

We have

$$\frac{1}{x-\frac{1}{2}} \ge \frac{1}{x} \quad \text{if} \quad x > 1$$

▶ therfore using  $f(x) = \frac{1}{x - \frac{1}{2}}$  and  $g(x) = \frac{1}{x}$  in the comparison test, we have

$$\int_{1}^{\infty} \frac{1}{x - \frac{1}{2}} dx \quad \text{diverges}$$

since

$$\int_{1}^{\infty} \frac{1}{x} dx \quad \text{diverges.}$$