Improper Integrals

In this section, we will extend the concept of the definite integral $\int_{a}^{b} f(x) d x$ to functions with an infinite discontinuity and to infinite intervals.

- That is integrals of the type
A) $\int_{1}^{\infty} \frac{1}{x^{3}} d x$
B) $\int_{0}^{1} \frac{1}{x^{3}} d x$
C) $\int_{-\infty}^{\infty} \frac{1}{4+x^{2}}$
- Note that the function $f(x)=\frac{1}{x^{3}}$ has a discontinuity at $x=0$ and the F.T.C. does not apply to B.
- Note that the limits of integration for integrals A and C describe intervals that are infinite in length and the F.T.C. does not apply.

Infinite Intervals

An Improper Integral of Type 1

(a) If $\int_{a}^{t} f(x) d x$ exists for every number $t \geq a$, then

$$
\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x
$$

provided that limit exists and is finite.
(c) If $\int_{t}^{b} f(x) d x$ exists for every number $t \leq b$, then

$$
\int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x
$$

provided that limit exists and is finite.
The improper integrals $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{b} f(x) d x$ are called Convergent if the corresponding limit exists and is finite and divergent if the limit does not exists.
(c) If (for any value of a) both $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{a} f(x) d x$ are convergent, then we define

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x
$$

Infinite Intervals

$$
\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x \quad \int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x
$$

If $f(x) \geq 0$, we can give the definite integral above an area interpretation; namely that if the improper integral converges, the area under the curve on the infinite interval is finite.
Example Determine whether the following integrals converge or diverge:

$$
\int_{1}^{\infty} \frac{1}{x} d x, \quad \int_{1}^{\infty} \frac{1}{x^{3}} d x
$$

- By definition $\int_{1}^{\infty} \frac{1}{x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} 1 / x d x$
$\downarrow=\left.\lim _{t \rightarrow \infty} \ln x\right|_{1} ^{t}=\lim _{t \rightarrow \infty}(\ln t-\ln 1)$
- $=\lim _{t \rightarrow \infty} \ln t=\infty$
- The integral $\int_{1}^{\infty} \frac{1}{x} d x$ diverges.

Infinite Intervals

$$
\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x \quad \int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x
$$

Example Determine whether the following integrals converge or diverge:

$$
\int_{1}^{\infty} \frac{1}{x} d x, \quad \int_{1}^{\infty} \frac{1}{x^{3}} d x
$$

- By definition $\int_{1}^{\infty} \frac{1}{x^{3}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{3}} d x$
$-=\left.\lim _{t \rightarrow \infty} \frac{x^{-2}}{-2}\right|_{1} ^{t}$
$\Rightarrow=\lim _{t \rightarrow \infty}\left(\frac{-1}{2 t^{2}}+\frac{1}{2}\right)$
- $=0+\frac{1}{2}=\frac{1}{2}$.
- The integral $\int_{1}^{\infty} \frac{1}{x^{3}} d x$ converges to $\frac{1}{2}$.

Area Interpretation

Since $\int_{1}^{\infty} \frac{1}{x} d x$ diverges, the area under the curve $y=1 / x$ on the interval $[1, \infty)$ (shown on the left above) is not finite.

Since $\int_{1}^{\infty} \frac{1}{x^{3}} d x$ converges, the area under the curve $y=1 / x^{3}$ on the interval $[1, \infty)$ (shown on the right above) is finite.

Infinite Intervals

$$
\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x \quad \int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x
$$

Example Determine whether the following integral converges or diverges: $\int_{-\infty}^{0} e^{x} d x$

- By definition $\int_{-\infty}^{0} e^{x} d x=\lim _{t \rightarrow-\infty} \int_{t}^{0} e^{x} d x$
$\downarrow=\left.\lim _{t \rightarrow-\infty} \mathrm{e}^{x}\right|_{t} ^{0}$
$-=\lim _{t \rightarrow-\infty}\left(e^{0}-e^{t}\right)$
- $=1-0=1$.
- The integral $\int_{-\infty}^{0} e^{x} d x$ converges to 1 .

Infinite Intervals

If (for any value of a) both $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{a} f(x) d x$ are convergent, then we define

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x
$$

Example Determine whether the following integral converges or diverges:

$$
\int_{-\infty}^{\infty} \frac{1}{4+x^{2}} d x
$$

- Since this is a continuous function, we can calculate $\int_{0}^{\infty} \frac{1}{4+x^{2}} d x$ and $\int_{-\infty}^{0} \frac{1}{4+x^{2}} d x$
$-\int_{0}^{\infty} \frac{1}{4+x^{2}} d x=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{1}{4+x^{2}} d x=\left.\lim _{t \rightarrow \infty} \frac{1}{2} \tan ^{-1} \frac{x}{2}\right|_{0} ^{t}$
$-=\lim _{t \rightarrow \infty} \frac{1}{2}\left(\tan ^{-1} \frac{t}{2}-\tan ^{-1} 0\right)=\frac{1}{2}\left(\frac{\pi}{2}-0\right)=\frac{\pi}{4}$.
- $\int_{-\infty}^{0} \frac{1}{4+x^{2}} d x=\lim _{t \rightarrow-\infty} \int_{t}^{0} \frac{1}{4+x^{2}} d x=\left.\lim _{t \rightarrow-\infty} \frac{1}{2}\left(\tan ^{-1} \frac{x}{2}\right)\right|_{t} ^{0}$
$-=\lim _{t \rightarrow-\infty} \frac{1}{2}\left(\tan ^{-1} 0-\tan ^{-1} \frac{t}{2}\right)=\frac{1}{2}\left(0-\frac{(-\pi)}{2}\right)=\frac{\pi}{4}$.
- The integral $\int_{-\infty}^{\infty} \frac{1}{4+x^{2}} d x$ converges and is equal to

$$
\int_{-\infty}^{0} \frac{1}{4+x^{2}} d x+\int_{0}^{\infty} \frac{1}{4+x^{2}} d x=\frac{\pi}{4}+\frac{\pi}{4}=\frac{\pi}{2}
$$

Infinite Intervals

Theorem

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x \text { is convergent if } p>1 \text { and divergent if } p \leq 1
$$

Proof

- We've verified this for $p=1$ above. If $p \neq 1$
- $\int_{1}^{\infty} \frac{1}{x^{p}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{p}} d x=\left.\lim _{t \rightarrow \infty} \frac{x^{1-p}}{1-p}\right|_{1} ^{t}=\lim _{t \rightarrow \infty}\left(\frac{t^{1-p}}{1-p}-\frac{1}{1-p}\right)$
- If $p>1, \lim _{t \rightarrow \infty}\left(\frac{t^{1-p}}{1-p}-\frac{1}{1-p}\right)=-\frac{1}{1-p}$ and the integral converges.
- If $p<1, \lim _{t \rightarrow \infty}\left(\frac{t^{1-p}}{1-p}-\frac{1}{1-p}\right)$ does not exist since $\frac{t^{1-p}}{1-p} \rightarrow \infty$ as $t \rightarrow \infty$ and the integral diverges.

Functions with infinite discontinuities

Improper integrals of Type 2

(a) If f is continuous on $[a, b)$ and is discontinuous at b, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

if that limit exists and is finite.
(b) If f is continuous on ($a, b]$ and is discontinuous at a, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x
$$

if that limit exists and is finite.
The improper integral $\int_{a}^{b} f(x) d x$ is called convergent if the corresponding limit exists and Divergent if the limit does not exist.
(c) If f has a discontinuity at c, where $a<c<b$, and both $\int_{a}^{c} f(x) d x$ and $\int_{c}^{b} f(x) d x$ are convergent, then we define

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Functions with infinite discontinuities

If f is continuous on $[a, b)$ and is discontinuous at b, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

if that limit exists and is finite.
Example Determine whether the following integral converges or diverges

$$
\int_{0}^{2} \frac{1}{x-2} d x
$$

- The function $f(x)=\frac{1}{x-2}$ is continuous on $[0,2)$ and is discontinuous at 2 . Therefore, we can calculate the integral.
$-\int_{0}^{2} \frac{1}{x-2} d x=\lim _{t \rightarrow 2^{-}} \int_{0}^{t} \frac{1}{x-2} d x=\left.\lim _{t \rightarrow 2^{-}} \ln |x-2|\right|_{0} ^{t}$
$-=\lim _{t \rightarrow 2^{-}}(\ln |t-2|-\ln |-2|)$ which does not exist since $\ln |t-2| \rightarrow-\infty$ as $t \rightarrow 2^{-}$.
- Therefore the improper integral $\int_{0}^{2} \frac{1}{x-2} d x$ diverges.

Functions with infinite discontinuities

If f is continuous on $(a, b]$ and is discontinuous at a, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x
$$

if that limit exists and is finite.
Example Determine whether the following integral converges or diverges

$$
\int_{0}^{1} \frac{1}{x^{2}} d x
$$

- The function $f(x)=\frac{1}{x^{2}}$ is continuous on $(0,1]$ and is discontinuous at 0 . Therefore, we can calculate the integral.
- $\int_{0}^{1} \frac{1}{x^{2}} d x=\lim _{t \rightarrow 0^{+}} \int_{t}^{1} \frac{1}{x^{2}} d x=\left.\lim _{t \rightarrow 0^{+}} \frac{-1}{x}\right|_{t} ^{1}$
$>=\lim _{t \rightarrow 0^{+}}\left(-1-\frac{(-1)}{t}\right)==\lim _{t \rightarrow 0^{+}}\left(\frac{(1)}{t}-1\right)$ which does not exist since $\frac{1}{t} \rightarrow \infty$ as $t \rightarrow 0^{+}$.
- Therefore the improper integral $\int_{0}^{1} \frac{1}{x^{2}} d x$ diverges.

Functions with infinite discontinuities

Theorem It is not difficult to show that

$$
\int_{0}^{1} \frac{1}{x^{p}} d x \text { is divergent if } p \geq 1 \text { and convergent if } p<1
$$

Functions with infinite discontinuities

If f has a discontinuity at c, where $a<c<b$, and both $\int_{a}^{c} f(x) d x$ and $\int_{c}^{b} f(x) d x$ are convergent, then we define

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Example determine if the following integral converges or diverges and if it converges find its value.

$$
\int_{0}^{4} \frac{1}{(x-2)^{2}} d x
$$

- The function $\frac{1}{(x-2)^{2}}$ has a discontinuity at $x=2$. Therefore we must check if both improper integrals $\int_{0}^{2} \frac{1}{(x-2)^{2}} d x$ and $\int_{2}^{4} \frac{1}{(x-2)^{2}} d x$ converge or diverge.
$-\int_{0}^{2} \frac{1}{(x-2)^{2}} d x=\lim _{t \rightarrow 2^{-}} \int_{0}^{t} \frac{1}{(x-2)^{2}} d x=\left.\lim _{t \rightarrow 2^{-}} \frac{(-1)}{x-2}\right|_{0} ^{t}$
$-=\lim _{t \rightarrow 2^{-}}\left(\frac{(-1)}{t-2}-\frac{1}{2}\right)$, which does not exist.
- Therefore we can conclude that $\int_{0}^{4} \frac{1}{(x-2)^{2}} d x=\int_{0}^{2} \frac{1}{(x-2)^{2}} d x+\int_{2}^{4} \frac{1}{(x-2)^{2}} d x$ diverges, since this integral converges only if both improper integrals $\int_{0}^{2} \frac{1}{(x-2)^{2}} d x$ and $\int_{2}^{4} \frac{1}{(x-2)^{2}} d x$ converge.

Comparison Test for Integrals

Comparison Test for Integrals

Theorem If f and g are continuous functions with $f(x) \geq g(x) \geq 0$ for $x \geq a$, then
(a) If $\int_{a}^{\infty} f(x) d x$ is convergent, then $\int_{a}^{\infty} g(x) d x$ is convergent.
(b) If $\int_{a}^{\infty} g(x) d x$ is divergent, then $\int_{a}^{\infty} f(x) d x$ is divergent.

Example Use the comparison test to determine if the following integral is convergent or divergent (using your knowledge of integrals previously calculated).

$$
\int_{1}^{\infty} \frac{1}{x^{2}+x+1} d x
$$

- We have

$$
\frac{1}{x^{2}+x+1} \leq \frac{1}{x^{2}} \text { if } x>1
$$

- Therefore using $f(x)=\frac{1}{x^{2}}$ and $g(x)=\frac{1}{x^{2}+x+1}$ in the comparison test above, we can conclude that

$$
\int_{1}^{\infty} \frac{1}{x^{2}+x+1} d x \quad \text { converges }
$$

since

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x \quad \text { converges }
$$

Comparison Test for Integrals

Comparison Test for Integrals

Theorem If f and g are continuous functions with $f(x) \geq g(x) \geq 0$ for $x \geq a$, then
(a) If $\int_{a}^{\infty} f(x) d x$ is convergent, then $\int_{a}^{\infty} g(x) d x$ is convergent.
(b) If $\int_{a}^{\infty} g(x) d x$ is divergent, then $\int_{a}^{\infty} f(x) d x$ is divergent.

Example Use the comparison test to determine if the following integral is convergent or divergent (using your knowledge of integrals previously calculated).

$$
\int_{1}^{\infty} \frac{1}{x-\frac{1}{2}} d x
$$

- We have

$$
\frac{1}{x-\frac{1}{2}} \geq \frac{1}{x} \text { if } x>1
$$

- therfore using $f(x)=\frac{1}{x-\frac{1}{2}}$ and $g(x)=\frac{1}{x}$ in the comparison test, we have

$$
\int_{1}^{\infty} \frac{1}{x-\frac{1}{2}} d x \quad \text { diverges }
$$

since

$$
\int_{1}^{\infty} \frac{1}{x} d x \text { diverges. }
$$

